Maîtrise des tordeuses de la grappe
Les insectes nuisibles de la vigne ont, de tout temps, préoccupé à juste titre le monde des vignerons et donné lieu depuis plus d'un siècle à de nombreuses études. Les vers de la grappe sont présents depuis des millénaires en Europe et notamment la Cochlílida déjà citée par Plin en semble t-il. De grosses pertes de récolte ont été enregistrées autour des années 1770, en Suisse et en Bourgogne. De 1887 à 1897, la Cochlílida causait de gros dégâts en Bordelais. C'est à peu près à cette période que l'Eupédis est signalée (probablement originaire d'Autriche). Toutes deux, associées ou séparément, envahissent l'ensemble du vignoble français.

Les moyens de lutte contre les vers de la grappe étaient limités au cours de cette période : brûlage des échalas, décortication des troncs des caps. Ils se sont considérablement améliorés à la naissance de l'industrie chimique de l'entre-deux-guerres : arseniate de plomb, DDT, insecticides actifs sur les vers mais très toxiques pour le viticulteur et dangereux pour le consommateur et l'écosystème. La lutte actuelle s'oriente vers une protection des grappes avec des spécialités phytopharmaceutiques de plus en plus spécifiques et respectueuses de l'homme ou de l'environnement, ou des pratiques visant à perturber le cycle du ravageur. L'objectif de cette plaquette est de dresser un état des méthodes de lutte actuellement validées à l'issue des recherches effectuées depuis une trentaine d'années.

Il est aussi de présenter les outils et techniques d'aide à la décision dont le viticulteur et le technicien qui l'accompagne disposent pour évaluer les risques et décider éventuellement d'une intervention pour préserver la récolte. Enfin, sont évoqués les travaux récents ou en cours sur les possibilités de régulation des populations de tortueuses par une lutte biologique.

© ITV France. Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, d'une part, que les copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'ilustration, toute reproduction ou reproduction même partielle, faite sans le concours de l'auteur ou de ses ayants droit ou ayants cause, est illicite (article L. 122-4). Cette représentation ou reproduction par quelque procédé que ce soit, est constitutive d'une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.
Dans certaines régions viticoles, l’espèce majoritaire peut changer au cours du temps.

Présence majoritaire/minoritaire :
- Eudémis E/e
- Cochlis C/c

Biologie des tordeuses de la grappe
- Papillons
- Œufs
- Chenilles

Nuisibilité des tordeuses et conséquences des attaques sur la récolte
- Effet quantitatif
- Effet qualitatif
- Conséquences économiques

Outils techniques d’aide à la décision
- Plégeage
- Modèles
- Observations au vignoble

Méthodes de lutte
- Lutte au moyen d’applications de produits phytopharmaceutiques
- Lutte par confusion sexuelle
- Lutte biologique

Conclusion
- Première génération : une lutte curative
- Deuxième génération : une lutte préventive
- Troisième génération : seule Eudémis est concernée par la lutte.
Biologie des torde

→ Eudémis : Lobesia botrana (Denis et Schiffermüller)
→ Cochylis : Eupoeclia ambiguella (Hübner).
→ Eulia : Argyrotaenia pulchellana (Haworth).

- Eudémis compte deux à trois générations complètes et parfois un début de quatrième en zone méridionale.
- Cochylis n’en compte que deux et très exceptionnellement trois.
- Eulia deux à trois générations.

♦ Les papillons : un potentiel de reproduction important
En conditions favorables, les femelles atteignent la maturité sexuelle dès le 3e jour de leur existence ; leur fertilité est importante pendant les dix jours qui suivent (potentiel de ponte 50 à 100 œufs). Les mâles peuvent assumer une quinzaine d’accouplements : cependant, leur fertilité diminue à mesure que le nombre de copulations augmente.

♦ L’œuf est de forme lenticulaire et convexe (0,65 à 0,78 mm)
Sa coloration varie selon l’âge : la ponte fraîche translucide passe par un stade brillant, puis jaune ; vers le troisième jour, les yeux (ocelles) deviennent visibles. La capsule céphalique est visible vingt-quatre heures en moyenne avant l’éclosion : il s’agit du stade « tête noire ». L’œuf de Cochylis présente des granules orangés. Sa surface est réticulée.

Source : Roehrich/Stockel.
Les œufs sont déposés sur les inflorescences (bractées, boutons floraux) en G1, sur les baies non vérées en G2 ou vérées en G3 pour l'Eudémis. Pour Eulía, les pontes sont déposées en ooplaques sur les bois d'un an en G1 et face supérieure des feuilles pour les générations suivantes. Les chenilles sont présentes sur l'ensemble de la végétation puis se localisent sur grappe à partir de la véraison.

Chenilles : à l'origine des dégâts

Les trois espèces attaquent aussi bien les inflorescences que les grappes. En G1, les chenilles consomment les pièces florales, provoquant une « coulure » de la future grappe.

En G2, Cochylis et Eudémis perforent les baies encore vertes, se nourrissent de la pulpe. Eulía, quant à elle, mordille les grains sans y pénétrer. En G3, les chenilles grignotent les baies, provoquant des blessures. Ces lésions, tant en G2 qu'en G3, constituent des portes d'entrée à *Botrytis cinerea*. Elles peuvent favoriser ponctuellement l'installation de la pourriture acide. Les larves de Cochylis, moins voraces, ont un développement larvaire plus lent en 2e génération. Les chenilles passent par 5 stades larvaires qui peuvent être distingués, pour Eudémis et Cochylis, par leur taille :
- Stade L1 → 1 à 1,5 mm
- Stade L2 → 2 à 3 mm
- Stade L3 → 4,5 à 5 mm
- Stade L4 → 6 à 7 mm
- Stade L5 → 10 à 11 mm.

Eulía présente des tailles supérieures. À partir du stade L2, on est en mesure de distinguer Cochylis des deux autres espèces. La tête est noire, la chenille est animée de mouvements lents. Pour Eudémis et Eulía, la tête est de couleur « miel », les mouvements sont vifs. Eulía, nettement plus grande qu'Eudémis (de 4 à 18 mm), d'abord jaune, prend une coloration vert clair par la suite.

En période estivale, la chrysalidation s'effectue essentiellement dans les feuilles. Chrysalides non diapausantes, papillons, œufs, chenilles, le cycle se poursuit pour donner la 2e et la 3e génération. On trouve les chrysalides diapausantes sous les écorces.
Nuisibilité des tordeuses

Dégâts de 1ère génération

Glomérule et Eudémis

Dégâts de 2ème génération

Perforation des baies

Eudémis, dégâts de 2ème génération

Dégâts de 3ème génération

et développement de Botrytis lors de la maturation

Glomérule et Cochylis

Dégâts de G2 et G3 en absence de botrytis

Aspect des dégâts à la nouaison

Dégâts de tordeuses et botrytis
Conséquences des attaques sur la récolte

Effet quantitatif

- **Sur raisins de cuve**
 Les mesures pondérales, effectuées sur des parcelles avec forte population estivale de tordeuses de la grappe (G2 et G3), n'ont pas permis de conclure à une perte de récolte entre les parties protégées et les témoins. Par contre, pour des observations réalisées dans les mêmes conditions pour les populations de printemps (G1) sur des cépages à petites grappes, (exemple pinot) ou sujets à une coulure lors de la floraison (exemple grenache), la destruction des inflorescences par les chenilles de tordeuses de la grappe peut induire ou accentuer la diminution du nombre de baies par grappe et conduire ainsi à une diminution du poids de la récolte.

- **Sur raisins de table**
 Outre le phénomène constaté en G1 sur raisins de cuve, les blessures faîtes aux baies par la G2 et la G3 entraînent l'élaboration obligatoire de celles-ci par « ciselage » (tri à la parcelle avant conditionnement) et de ce fait, une perte directe de récolte, parfois non négligeable.

Effet qualitatif

Les travaux conduits sur l'incidence éventuelle des attaques de tordeuses de la grappe sur l'installation de Botrytis cinerea en année favorable à son développement mettent en évidence une relation directe. En effet, toute blessure (perforation) occasionnée aux baies au cours des générations estivales, G2 et surtout G3, constitue une "porte d'entrée" pour le champignon de la pourriture grise.

Conséquences économiques

Sur cépages de cuve, si les effets liés aux pertes de récolte sont très limités (hormis situations particulières, vignes à faible récolte et forte population de tordeuses), il en va tout autrement lorsque les attaques de G2 et G3 sont suivies des conditions favorables au développement de la pourriture grise :
- dépréciation organoleptique
- diminution de la qualité du vin
- surcoûts liés aux mesures correctives apportées au vignoble (traitements phytos, tri...) et au chai (traitement de la vendange altérée).

Sur cépages de table, le ciselage des baies touchées (perforation, pourriture), renchérit les charges de main-d’œuvre.

Relation entre le taux de pourriture et l'importance de la population d'Eudémis en 3e génération.

Dans les vignobles concernés régulièrement par les tordeuses de la grappe, une bonne maîtrise de celles-ci conduit à une récolte de qualité, tout en réduisant notablement les frais de production.

Incidence de la protection « tordeuses » sur le développement de Botrytis cinerea

Source : ITV Nîmes
Outils techniques d’aide à la

Ils ont pour objet de suivre les dynamiques de population des ravageurs à leurs différents stades de développement et d’évaluer les risques de dégâts.

♦ Piègeage
Il permet de détecter et suivre les vols de papillons.

♦ Le piège alimentaire
Récipient contenant un liquide attractif (lie de vin, vinaigre...), il attire les adultes mâles et femelles qui ont besoin d’eau en période sèche. Les indications obtenues sont de ce fait très aléatoires au printemps : prises importantes si faible humidité relative et rares si le végétal est humide (rosée), évaluation plus réaliste de la population de tordeuses en G2 et surtout en G3. Non sélectifs, ces pièges sont « pollués » par d’autres insectes capturés, ce qui implique un tri fastidieux lors des comptages.

♦ Le piège sexuel avec femelles vierges
Au cours des années soixante-dix, ce piégeage des mâles a été expérimenté. Les indications obtenues étaient bonnes, mais le dispositif lourd : mortalité des femelles au bout de 2 à 3 jours, nécessité d’avoir un élevage proche. Les piègeages à partir des femelles ont permis de comprendre le phénomène naturel d’attractivité du papillon mâle par les « pheromones d’appel » de la femelle.

♦ Le piège sexuel à pheromones
L’identification puis la synthèse des pheromones par l’INRA (DECOIN et AL.) ont permis de mieux suivre le vol des mâles d’une manière pratique. Connaissant la biologie de l’insecte, on peut ainsi prévoir la période potentielle de risque (prévision qualitative). Au-delà, l’espoir de pouvoir quantifier le risque et de programmer les interventions insecticides a été déçu. L’INRA Bordeaux a mené des études avec des capsules minidosées pour tenter d’affiner les prévisions. Une prévision négative des risques a été validée en G1 pour l’Eudémis en Aquitaine. En dessous de dix papillons capturés dans les dix premiers jours du vol, les seuils de risque ne seront atteints ni en 2e, ni en 3e génération et il sera donc injustifié de traiter. Cette règle de décision n’a pas été confirmée dans les autres régions viticoles (Bourgogne, Provence, Languedoc-Roussillon...).

♦ Modèles
Actuellement, deux modèles sont opérationnels :
- EVA, du Service de la Protection des Végétaux, utilisé dans le cadre des avertissements agricoles de cet organisme.
- Le modèle ACTA-ITV, inclus dans le logiciel Météoprog, distribué par l’Association de Coordination Technique Agricole.
Ces modèles, mis au point sur Eudémis, se révèlent également intéressants sur Cochylis dans le sud de la France.

♦ Principes
Il s’agit de simuler en temps réel, le déroulement de l’évolution du ravageur au travers de ses différents stades :
décision

adultes, œufs et larves. Il est ainsi possible de connaître avec suffisamment de précision, les moments « clés » nécessaires pour la mise en œuvre de la lutte, tels que le début des pontes et des éclosions sur les générations estivales. Ces outils permettent aussi d’indiquer la fin des pontes et des éclosions de première génération et donc de positionner idéalement une intervention printanière très efficace.

Fonctionnement
Ces modèles nécessitent que des paramètres météorologiques très simples à mesurer, tels que la température maximale et minimale journalière. Le logiciel peut donc fonctionner, soit par saisie manuelle des données, soit par leur acquisition directe à partir de stations météorologiques automatiques.

Utilisation pratique
Cet outil permet, lorsqu’il est validé dans une région viticole, de préciser les points suivants :
- en G1, traitement d’intervention de la présence de stade L3, soit 2 à 10 % des stades âgés (L3 - L5), dans les vignobles où le risque est fort et régulier,
- en G2 et G3, intervention avec un produit ovicide dès que la simulation du stade « œuf » atteint 2 %, ou avec un produit larvicide dès que la simulation du stade « larve » atteint également 2 %.

Limites
Il est actuellement impossible de quantifier un risque réel à la parcelle, si ce n’est par un contrôle précis des grappes. Ces modèles ne peuvent donc pas quantifier un risque, mais le qualiﬁer avec précision. La prise de décision finale devrait rester du ressort de l’observation directe des grappes ; le moment où elle doit être réalisée est parfaitement déterminé par ces modèles.

Observations au vignoble
Le piégeage ou les modèles ne permettent pas de quantifier le risque. Seules, les observations de 50 à 100 grappes par parcelle permettent la prise de décision.
En G1, un comptage de glomérules est effectué. La lutte ne doit s’ensuivre que si le niveau atteint par le ravageur devient élevé et risque donc d’affecter la quantité de récolte. Les seuils communément admis suivant les zones viticoles et la sensibilité des cépages cultivés sont très variables.
À titre indicatif, les niveaux proposés fluctuent de 30 à 80 glomérules pour 100 inflorescences dans les régions septentrionales à 200 glomérules pour 100 inflorescences dans les vignobles méridionaux.
En G2 et en G3, la difficulté de l’observation des pontes et la fréquence des comptages sont des facteurs limitants pour le viticulteur. Cette approche est surtout utilisée par les prescripteurs (avertissements) sur un réseau de parcelles de référence.
Elle permet, pour une intervention éventuelle, de préciser :
- le début des vols,
- le début et l’importance des pontes,
- le début des éclosions « tête noire ».
Dans certaines régions viticoles, des grilles de décision d’intervention, mettant en relation les niveaux de population entre générations, sont à l’étude.
Méthodes de

- Lutte au moyen d'applications de produits phytopharmaceutiques

Connaître la posologie d'un insecticide est le point le plus important pour le viticulteur. Les vignerons doivent connaître avec précision la valeur pratique des insecticides contre les tordeuses de la grappe. Ils les utilisent dans une lutte dont l'efficacité dépend directement du choix de la date d'application qui peut être différent selon les produits. Une cotation ITV associe deux critères principaux :
 - l'ACTION DE CHOC (âge en jours des chenilles tuées),
 - la PERSISTANCE D'ACTION (durée en jours pendant laquelle le produit est efficace à partir du jour J : première éclosion - cf schéma p. 27).

L'ACTION OVICIDE (pourcentage de mortalité des œufs) complète l'information.

- Les produits d'origine naturelle : Bacillus thuringiensis (Bt)

 - Mode d'action
 Cette bactérie synthétise une protoxine enveloppée dans un cristal. Ce complexe de protéines doit être ingéré par l'insecte pour être toxique. Le cristal solubilisé par les sucès digestifs libère la toxine qui perforre la paroi intestinale.
 Il y a alorsarrêt de l'alimentation et septicième provoquant la mort de la larve dans les quarante-huit heures.

 - Efficacité des bio-insecticides
 Chaque spécialité de Bt a une efficacité et des caractéristiques particulières. Si l'action immédiate est peu différente, la persistance d'action est
plus ou moins longue suivant la spécialité.

En zone méridionale, pour Eudémis comme pour Cochylis, les efficacités atteignent des niveaux satisfaits. Par contre, en zone septentrionale sur Cochylis, les résultats sont moins performants, avec une efficacité de l'ordre de 50 %.

Pour Eulia, en Alsace, on atteint 70 % d'efficacité.

Bio-insecticides : cotation

Pour l'ensemble de ces produits, on montre une quasi absence d'effet de choc (1 jour), une persistance d'action de 10 à 12 jours. L'action oviocide est nulle.

Résultats obtenus en zone méridionale

<table>
<thead>
<tr>
<th>Produits</th>
<th>% d'efficacité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biobit HPWP à 0,75 kg</td>
<td>91</td>
</tr>
<tr>
<td>Delfin à 0,75 kg</td>
<td>87</td>
</tr>
<tr>
<td>Collapse à 1,50 l</td>
<td>76</td>
</tr>
<tr>
<td>Témoin non traité : nombre de chenilles/100 grappes</td>
<td>79,25</td>
</tr>
</tbody>
</table>

Eudémis - G3 - Stade d’application : tête noire - Renouvellement 10 jours après

<table>
<thead>
<tr>
<th>Produits</th>
<th>% d'efficacité</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVP à 3 l</td>
<td>86</td>
</tr>
<tr>
<td>Delfin à 0,75 kg</td>
<td>85</td>
</tr>
<tr>
<td>Sumicidin à 0,50 l (neurotoxique)</td>
<td>84</td>
</tr>
<tr>
<td>Témoin non traité : nombre de chenilles/100 grappes</td>
<td>226,50</td>
</tr>
</tbody>
</table>

Cochylis G1 - Stade d’application : premiers glomérules

<table>
<thead>
<tr>
<th>Produits</th>
<th>% d'efficacité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biobit HPWP à 0,75 kg</td>
<td>81</td>
</tr>
<tr>
<td>Delfin à 0,75 kg</td>
<td>70</td>
</tr>
<tr>
<td>Collapse à 1,50 l</td>
<td>73</td>
</tr>
<tr>
<td>Sumicidin à 0,50 l (neurotoxique)</td>
<td>90</td>
</tr>
<tr>
<td>Témoin non traité : nombre de chenilles/100 grappes</td>
<td>542,50</td>
</tr>
</tbody>
</table>

Source : ITV Perpignan

Résultats obtenus en Bourgogne et en Beaujolais

<table>
<thead>
<tr>
<th>Produits</th>
<th>% d’efficacité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karaté à 0,3 l/ha (neurotoxique)</td>
<td>68 (45 / 80 %)</td>
</tr>
<tr>
<td>MVP à 3 l/ha</td>
<td>51 (30 / 85 %)</td>
</tr>
<tr>
<td>Delfin + Sandovit à 0,75 + 1 l/ha</td>
<td>58 (26 / 71 %)</td>
</tr>
<tr>
<td>Témoins non traités : nombre de chenilles/100 grappes</td>
<td>30 à 242</td>
</tr>
</tbody>
</table>

Source : Communication 5° CIRA, AFPP, Montpellier 1999, Carsoule J., Crozier P., et Magnien C.

* (mini, maxi) sur l’ensemble des essais.
Méthodes de

> **Les régulateurs de croissance d'insectes (RCI)**
> Cette nouvelle catégorie de molécules actives sur arthropodes est apparue depuis peu d'années. Elles ne sont pas neurotoxiques, mais perturbent la croissance des insectes.

> **Mode d'action**
> Parmi les RCI, on peut faire une distinction entre :
> - **Les mimétiques d'une substance de croissance naturelle de l'insecte** : le seul représentant de ce type de produit est Inségar à base de fénoxycarbate qui simule l'action de l'hormone juvénile.
> En regard de sa structure chimique, le fénoxycarbate est un carbamate, mais contrairement aux autres carbamates, il n'est pas neurotoxique. L'efficacité ovicide de ce régulateur de croissance est dans la pratique obtenue avec des applications avant le dépôt des pontes (préoviposition). Action déterminante sur l'embryogénèse pendant l'incubation.
> - **Les inhibiteurs de synthèse de chitine** empêchent la formation de la cuticule (squelette pour les insectes) renouvelée à chaque mue : ils agissent donc lors du passage entre deux stades larvaires successifs.
> Le Cascade, fluénoxonuron, est une molécule de la famille des acylureas dotée de propriétés spécifiques qui lui confèrent une activité insecticide. Son mode d'action provoque la rupture du processus de la mue des insectes, en perturbant l'élaboration de la chitine au niveau des premiers stades larvaires. Ovicide et larvicide par ingestion, ce produit présente une souplesse d'utilisation. Récemment deux nouvelles spécialités sont apparues : Furo (luténoxonuron) et Lufex (luténoxonuron + fénoxycarbate).

> **Les accélérateurs de mues**
> perturbent le rythme normal des mues. Le seul représentant actuel est Confirm, à base de tétuflénozide. Substance essentiellement active par ingestion, son positionnement est idéal au tout début des éclosions (stade « tête noire »).

<table>
<thead>
<tr>
<th>Action ovicide (préoviposition) sur Eudémis au laboratoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacité en %</td>
</tr>
<tr>
<td>Fuoro</td>
</tr>
<tr>
<td>88</td>
</tr>
</tbody>
</table>

Source : ITV France - Pergignan.
lutte

Efficacité
Bien que certaines spécialités soient homologuées sur Eudémis et Cochylis, les niveaux d’efficacité obtenus peuvent être différents.

En région Paca, deux expérimentations ont été mises en place : l’une sur une parcelle infestée par Cochylis, l’autre sur une parcelle infestée par Eudémis.

La spécialité Cascade confirme sa très bonne efficacité sur Eudémis et son comportement moins performant sur Cochylis. Le comportement de Fuoro se rapproche de celui de Cascade. À l’inverse, Insegar se révèle particulièrement performant sur Cochylis et moyen sur Eudémis.

En Bourgogne et Beaujolais sur Cochylis, Cascade (appliqué début ponte) se révèle très irrégulier, avec une efficacité moyenne de 49 %. Le Fuoro, positionné début ponte, assure une protection moyenne de 60 % avec une variation importante.

L’Insegar, appliqué avant les premières pontes, présente une excellente protection avec une efficacité moyenne de 86 % et une bonne régularité d’action.

En Alsace, sur Eulia, Insegar, seul RCI homologué sur cette espèce, s’avère décevant avec 40 % d’efficacité moyenne.

Cotation des RCI

<table>
<thead>
<tr>
<th>Spécialités</th>
<th>Action de choc en jours</th>
<th>Persistance d’action en jours</th>
<th>Effet ovicide en %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade</td>
<td>0</td>
<td>21</td>
<td>98*</td>
</tr>
<tr>
<td>Fuoro</td>
<td>0</td>
<td>21</td>
<td>92*</td>
</tr>
<tr>
<td>Lufox</td>
<td>0</td>
<td>21</td>
<td>98**</td>
</tr>
<tr>
<td>Confirm</td>
<td>7</td>
<td>21</td>
<td>50*</td>
</tr>
<tr>
<td>Insegar</td>
<td>0</td>
<td>14</td>
<td>98*</td>
</tr>
</tbody>
</table>

* Effet en préoviposition. ** Effet en pré et post-oviposition. (Source : ITV Perpignan)

Comparaison des essais Cascade, Fuoro et Insegar au vignoble

- Efficacité en %
 - Cascade
 - Fuoro
 - Insegar

Étude de l’efficacité de divers insecticides sur Cochylis en Bourgogne et Beaujolais.

Les neurotoxiques

Ils regroupent les insecticides appartenant aux familles chimiques des organophosphorés, carbamates, pyréthrinoides et oxadiazines.

Mode d'action

Ces produits tuent les insectes en inhibant la cholinestérase (organophosphorés et carbamates) ou en bloquant la transmission axonale de l'influx nerveux (pyréthrinoides et oxadiazines). La caractéristique principale de ce type de produits est la non-spéficité. Ils agissent à des degrés divers sur un très grand nombre d'insectes nuisibles ou utiles. Leur positionnement est à privilégier dès le début des écosions (stade "Tête noire"). Certains d'entre eux, compte tenu de leur action de choc importante, peuvent en dernier ressort s'utiliser comme solution de rattrapage (voir tableau de cotation).

Efficacité

Ces produits présentent une bonne efficacité globalement sur Eudémis et Cochylis. Les carbamates se situent cependant légèrement en retrait.

Il est inutile de doubler le traitement de deuxième génération, ainsi que le montrent les travaux conduits par le SRPV en PACA de 1996 à 2000 sur Eudémis et Cochylis. Pour toutes les applications, la spécialité utilisée était Karaté vert. Si ces essais révèlent une certaine fluctuation de l'efficacité, le renouvellement de la protection n'apporte par contre jamais de surcroît d'efficacité.

Sur Eulia, les pyréthrinoides présentant une efficacité supérieure à celle des organophosphorés, mais qui reste moyenne.